您现在的位置是:首页 》 发表论文

浏览论文(根据年份):
All
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
Before 2006
授权专利(12项目):
详细

2017  (8 / Total 113 )

  • 1
    Zhang C, Yu X, Gao L, Zhao Y, Lai J, Lu D, Bao R, Jia B, Zhong L, Wang F, Liu Z. Noninvasive Imaging of CD206-Positive M2 Macrophages as an Early Biomarker for Post-Chemotherapy Tumor Relapse and Lymph Node Metastasis. Theranostics. 2017 Sep 26;7(17):4276-4288. doi: 10.7150/thno.20999.
    Abstract:
    Tumor relapse after initial regression post-chemotherapy is a major challenge in cancer treatment, as it usually leads to local-regional recurrence or inoperable distant metastasis. M2 macrophages diminish the tumor-inhibitory effect of chemotherapy and correlate with distant metastasis and poor prognosis. In this study, we investigated whether molecular imaging of M2 macrophages could serve as an early biomarker for tumor relapse after chemotherapy and tumor lymph node metastasis in preclinical mouse models. Methods: We developed M2 macrophage-targeted probes for near-infrared fluorescence (NIRF) imaging and single-photon emission computed tomography (SPECT) using an anti-CD206 monoclonal antibody. The specific targeting capacity and potential applications of the NIRF and SPECT probes were investigated in subcutaneous tumor and lymph node metastasis models of 4T1 murine breast cancer. Results: M2 macrophage infiltration was significantly increased in the 4T1 tumors that later underwent relapse but not in non-relapsing 4T1 tumors after cyclophosphamide treatment. Through NIRF imaging and SPECT using our synthesized probes, the infiltration of M2 macrophages in relapsing tumors and tumor lymph node metastasis could be sensitively detected. Importantly, early prediction of tumor relapse by molecular imaging of M2 macrophages resulted in an effective eradication of tumors upon combination with additional radiotherapy. Conclusion: Our findings demonstrate that M2 macrophage-targeted imaging allows for noninvasively predicting post-chemotherapy tumor relapse and sensitively detecting the metastatic lymph nodes in vivo. This imaging strategy could provide a better understanding of cancer progression, enable early prediction of tumor resistance, and have implications on the rational design of cancer therapeutics.

    Keywords: CD206; M2 macrophage; Molecular imaging; SPECT; Tumor resistance.
  • 2
    Yu X, Gao D, Gao L, Lai J, Zhang C, Zhao Y, Zhong L, Jia B, Wang F, Chen X, Liu Z. Inhibiting Metastasis and Preventing Tumor Relapse by Triggering Host Immunity with Tumor-Targeted Photodynamic Therapy Using Photosensitizer-Loaded Functional Nanographenes. ACS Nano. 2017 Oct 24;11(10):10147-10158.

    Abstract:

    Effective cancer therapy depends not only on destroying the primary tumor but also on conditioning the host immune system to recognize and eliminate residual tumor cells and prevent metastasis. In this study, a tumor integrin αvβ6-targeting peptide (the HK peptide)-functionalized graphene oxide (GO) was coated with a photosensitizer (HPPH). The resulting GO conjugate, GO(HPPH)-PEG-HK, was investigated whether it could destroy primary tumors and boost host antitumor immunity. We found that GO(HPPH)-PEG-HK exhibited significantly higher tumor uptake than GO(HPPH)-PEG and HPPH. Photodynamic therapy (PDT) using GO(HPPH)-PEG suppressed tumor growth in both subcutaneous and lung metastatic mouse models. Necrotic tumor cells caused by GO(HPPH)-PEG-HK PDT activated dendritic cells and significantly prevented tumor growth and lung metastasis by increasing the infiltration of cytotoxic CD8+ T lymphocytes within tumors as evidenced by in vivo optical and single-photon emission computed tomography (SPECT)/CT imaging. These results demonstrate that tumor-targeted PDT using GO(HPPH)-PEG-HK could effectively ablate primary tumors and destroy residual tumor cells, thereby preventing distant metastasis by activating host antitumor immunity and suppressing tumor relapse by stimulation of immunological memory.

  • 3
    Zhao Y, Zhang C, Gao L, Yu X, Lai J, Lu D, Bao R, Wang Y, Jia B, Wang F, Liu Z. Chemotherapy-Induced Macrophage Infiltration into Tumors Enhances Nanographene-Based Photodynamic Therapy. Cancer Res. 2017 Nov 1;77(21):6021-6032.

    Abstract:

    Increased recruitment of tumor-associated macrophages (TAM) to tumors following chemotherapy promotes tumor resistance and recurrence and correlates with poor prognosis. TAM depletion suppresses tumor growth, but is not highly effective due to the effects of tumorigenic mediators from other stromal sources. Here, we report that adoptive macrophage transfer led to a dramatically enhanced photodynamic therapy (PDT) effect of 2-(1-hexyloxyethyl)-2-devinyl pyropheophor-bide-alpha (HPPH)-coated polyethylene glycosylated nanographene oxide [GO(HPPH)-PEG] by increasing its tumor accumulation. Moreover, tumor treatment with commonly used chemotherapeutic drugs induced an increase in macrophage infiltration into tumors, which also enhanced tumor uptake and the PDT effects of GO(HPPH)-PEG, resulting in tumor eradication. Macrophage recruitment to tumors after chemotherapy was visualized noninvasively by near-infrared fluorescence and single-photon emission CT imaging using F4/80-specific imaging probes. Our results demonstrate that chemotherapy combined with GO(HPPH)-PEG PDT is a promising strategy for the treatment of tumors, especially those resistant to chemotherapy. Furthermore, TAM-targeted molecular imaging could potentially be used to predict the efficacy of combination therapy and select patients who would most benefit from this treatment approach. 


     


    Cancer Res. 2017 ;77(21):6021-6032.
    DOI: 10.1158/0008-5472.CAN-17-1655
    Publication Date(Web):Sep 15, 2017
  • 4
    Yu X, Gao D, Gao L, Lai J, Zhang C, Zhao Y, Zhong L, Jia B, Wang F, Chen X, Liu Z. Inhibiting Metastasis and Preventing Tumor Relapse by Triggering Host Immunity with Tumor-Targeted Photodynamic Therapy Using Photosensitizer-Loaded Functional Nanographenes. ACS Nano. 2017 Oct 24;11(10):10147-10158.

    Abstract:

    Effective cancer therapy depends not only on destroying the primary tumor but also on conditioning the host immune system to recognize and eliminate residual tumor cells and prevent metastasis. In this study, a tumor integrin αvβ6-targeting peptide (the HK peptide)-functionalized graphene oxide (GO) was coated with a photosensitizer (HPPH). The resulting GO conjugate, GO(HPPH)-PEG-HK, was investigated whether it could destroy primary tumors and boost host antitumor immunity. We found that GO(HPPH)-PEG-HK exhibited significantly higher tumor uptake than GO(HPPH)-PEG and HPPH. Photodynamic therapy (PDT) using GO(HPPH)-PEG suppressed tumor growth in both subcutaneous and lung metastatic mouse models. Necrotic tumor cells caused by GO(HPPH)-PEG-HK PDT activated dendritic cells and significantly prevented tumor growth and lung metastasis by increasing the infiltration of cytotoxic CD8+ T lymphocytes within tumors as evidenced by in vivo optical and single-photon emission computed tomography (SPECT)/CT imaging. These results demonstrate that tumor-targeted PDT using GO(HPPH)-PEG-HK could effectively ablate primary tumors and destroy residual tumor cells, thereby preventing distant metastasis by activating host antitumor immunity and suppressing tumor relapse by stimulation of immunological memory.



    ACS Nano, 2017, 11 (10), pp 10147–10158
    DOI: 10.1021/acsnano.7b04736
    Publication Date(Web):Jan 19 ,2017
  • 5
    Li L, Wu Y, Wang Z, Jia B, Hu Z, Dong C, Wang F.SPECT/CT Imaging of the Novel HER2-Targeted Peptide Probe 99mTc-HYNIC-H6F in Breast Cancer Mouse Models.J Nucl Med. 2017 May;58(5):821-826.

    Abstract:

    Overexpression of human epidermal growth factor receptor 2 (HER2) plays important roles in tumorigenesis and tumor progression in breast cancer. Nuclear imaging of HER2 expression in tumors might detect all HER2-positive tumors throughout the body and guide HER2-targeted therapies for patients. We therefore aimed to develop a HER2-targeted peptide probe for breast cancer imaging. A novel SPECT imaging probe, 99mTc-HYNIC-H6F, was prepared and then evaluated in breast cancer animal models.

                                                           


    J Nucl Med. ,58(5):821-826.
    DOI: 10.2967/jnumed.116.183863
    Publication Date(Web):Jan 19 ,2017
  • 6
    Liu X, Dong C, Shi J, Ma T, Jin Z, Jia B, Liu Z, Shen L, Wang F. Radiolabeled novel mAb 4G1 for immunoSPECT imaging of EGFRvIII expression in preclinical glioblastoma xenografts. Oncotarget. 2017 Jan 24;8(4):6364-6375

    Abstract:

    Epidermal growth factor receptor mutant III (EGFRvIII) is exclusively expressed in tumors, such as glioblastoma, breast cancer and hepatocellular carcinoma, but never in normal organs. Increasing evidence suggests that EGFRvIII has clinical significance in glioblastoma prognosis due to its enhanced tumorigenicity and chemo/radio resistance, thus the development of an imaging approach to early detect EGFRvIII expression with high specificity is urgently needed. To illustrate this point, we developed a novel anti-EGFRvIII monoclonal antibody 4G1 through mouse immunization, cell fusion and hybridoma screening and then confirmed its specificity and affinity by a serial of assays. Following biodistribution and small animal single-photon emission computed tomography (SPECT/CT) imaging of 125I-4G1 in EGFRvIII positive/negative tumor-bearing mice were performed and evaluated to verify the tumor accumulation of this radiotracer. The biodistribution indicated that 125I-4G1 showed prominent tumor accumulation at 24 h post-injection, which reached maximums of 11.20 ± 0.75% ID/g and 13.98 ± 0.57% ID/g in F98npEGFRvIII and U87vIII xenografts, respectively. In contrast, 125I-4G1 had lower tumor accumulation in F98npEGFR and U87MG xenografts. Small animal SPECT/CT imaging revealed that 125I-4G1 had a higher tumor uptake in EGFRvIII-positive tumors than that in EGFRvIII-negative tumors. This study demonstrates that radiolabeled 4G1 can serve as a valid probe for the imaging of EGFRvIII expression, and would be valuable into the clinical translation for the diagnosis, prognosis, guiding therapy, and therapeutic efficacy evaluation of tumors.

     


    Oncotarget. ,8(4):6364-6375.

    DOI: 10.18632/oncotarget.14088.

    Publication Date:Jan 24,2017


  • 7
    Chen G, Ouyang Z, Wang F, Wu H, Jia B, Chordia MD. Evaluation of Tc-99m-3PRGD2 Integrin Receptor Imaging in the Differential Diagnosis of Breast Lesions and Comparison With Mammography. Cancer Invest. 2017 Feb 7;35(2):108-115.


    Abstract:

    The aims of this study were to evaluate and compare efficacies of Tc-99m-3PRGD2 integrin receptor imaging under variety of conditions for the diagnosis of breast lesions, in addition to comparison with mammography.Tc-99m-3PRGD2-based molecular imaging is a sensitive method for the differential diagnosis of breast lesions. Particularly, Tc-99m-3PRGD2-SPECT/CT has better diagnostic value in dense mammary gland as compared with mammography. Combining two methods can significantly improve the diagnostic efficiency.

    (Figures for after adding.)


    Cancer Invest. ,35(2):108-115.
    DOI:10.1080/07357907.2016.1270957  
    Publication Date(Web):Jan 31 ,2017


  • 8
    Liang X, Fang L, Li X, Zhang X, Wang F.Activatable near infrared dye conjugated hyaluronic acid based nanoparticles as a targeted theranostic agent for enhanced fluorescence/CT/photoacoustic imaging guided photothermal therapy.Biomaterials. 2017 Jul;132:72-84.


    Abstract:

    Targeted theranostic nano-system integrating functions of both diagnosis and therapy shows great potential for improving diagnosis and therapeutic efficacy. Herein, multifunctional nanoparticle based on activatable hyaluronic acid (HA) conjugating two near-infrared (NIR) dyes of Cy5.5 and IR825 was successfully designed and fabricated, and simultaneously used as a carrier for encapsulating perfluorooctylbromide (PFOB). In this system, PFOB showed good capability to absorb the X-rays, Cy5.5 on the outer surface acted as a fluorescent dye activatable by hyaluronidases (Hyals) in the tumor, and IR825 in the core as a photothermal agent. The obtained nanoparticles (NPs) of PFOB@IR825-HA-Cy5.5 can be utilized for triple X-ray computed tomography (CT), fluorescence and photoacoustic imaging. When PFOB@IR825-HA-Cy5.5 NPs were intravenously injected into the mice bearing HT-29 tumor, efficient tumor accumulation was clearly observed, as revealed by the triple modal imaging. An in vivo tumor treatment experiment was conducted by combination of PFOB@IR825-HA-Cy5.5 and near-infrared laser irradiation, achieving effective tumor ablation in mice. Therefore, PFOB@IR825-HA-Cy5.5 NPs is a safe, efficient, imageable photothermal nanoprobe, showing great potential for cancer theranostics.

                                                  


    Biomaterials. ,2017 ,132:72-84

    DOI:10.1016/j.biomaterials.2017.04.006

    Publication Date(Web):Apr 8 ,2017


中心地址:北京市海淀区学院路38号  电话:010-82802871  传真:010-82801145    邮编:100191
北京大学医学同位素研究中心, 京ICP备15055835